Implementation of a Neuro-Fuzzy Direct Torque and Reactive Power Control for Doubly Fed Induction Motor

نویسندگان

  • R. V. Jacomini
  • C. M. Rocha
  • J. A. T. Altuna
  • J. L. Azcue
  • C. E. Capovilla
  • A. J. Sguarezi
چکیده

This paper proposes a Takagi-Sugeno neuro-fuzzy inference system for direct torque and stator reactive power control applied to a doubly fed induction motor. The control variables (d-axis and q-axis rotor voltages) are determined through a control system composed by a neuro-fuzzy inference system and a first order Takagi-Sugeno fuzzy logic controller. Experimental results are presented to validate the controller operation for variable speed under no-load and load conditions and stator reactive power variation under load condition. For this last validation, a PI controller is used to control the rotor speed, thereby its output is used to manipulate the torque in order to follow the demanded speed value. Streszczenie. W artykule opisano inferencyjny neuro-fuzzy system Takagi-Sugeno użyty do sterowania momentem i mocą bierną w podwójnie zasilanym silniku indukcyjnym. Przeprowadzono eksperymenty sterowania silnikiem obciążonym i nieobciążonym.(Zastosowanie systemu neurofuzzy do sterowania momentem i mocą bierną w podwójnie zasilanym silniku indukcyjnym)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition

This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...

متن کامل

Neuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator

The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...

متن کامل

A Combined Vector and Direct Power Control for AC/DC/AC Converters in DFIG Based Wind Turbine

The doubly-fed generators (DFIG) have clear superiority for the applications of large capacity and limited-range speed control case due to the partially rated inverter, lower cost and high reliability. These characteristics enable the doubly-fed wound rotor induction machine to have vast applications in wind-driven generation.In this paper Combined Vector and direct power control (CVDPC) strate...

متن کامل

A simple direct-torque neuro-fuzzy control of PWM-inverter-fed induction motor drive

In this paper, the concept and implementation of a new simple direct-torque neuro-fuzzy control (DTNFC) scheme for pulsewidth-modulation-inverter-fed induction motor drive are presented. An adaptive neuro-fuzzy inference system is applied to achieve high-performance decoupled flux and torque control. The theoretical principle and tuning procedure of this method are discussed. A 3-kW induction m...

متن کامل

Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller

In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014